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The distinction between current and constituent quarks is manifested 

in the inequivalence of V~C~UIU matrix elements of the corresponding bad 

operators, <O( (99) !O> con i co/ (4q)c”rr10’. Since the former relates to the 

Nambu-Goldscone spontaneous breakdow of chiral symmetry, <O/(qq&,,lO> # 0, 

there is no compelling reason why <O((qq)curr[O> cannot vanish in the chiral- 

symmetric limit. A consistent “neutral PCAC” picture, in which <O( (99) 
C”JO> 

is proportional to the current quark mass, is shown to provide an excellent 

phenomenological description of the chiral symmetry-broken world. Thisincludes 

the flavor independence of the dynamically-generated quark mas. ,Moreover, the U(1) 

‘acuum Kard identity puzzle has a trivial solution in the neurral iT.‘C :cneme. 
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I. Introduction 

The Goldstone theorem (1) applied to chiral symmetry states that for con- 

served axial-vector currents (in the chiral limit), if the associated W(3) 

charges Q;, i = 1 - 8, break the vacuum symmetry. 

Q;lO> f 0 > (1) 

then there must exist massless r, K and QS pseudoscalar mesons in the theory. 

The condition (l), however, is not easy to implement in practice, and so one 

usually invokes a slightly stronger condition for spontaneous breakdown of 

(2,3). chiral symmetry . 

(OliqlO) # 0 f (7-a) 

valid for each W(3) flavor u, d, s. Since the vacuum is a unitary singlet, 

it is quite natural to extend (2a) in the chiral limit to 

(Ol;ulO) = (Ojdd10) = (OlsS/O) # 0. (2b) 

The controversy is not whether (2) implies (l), but rather, to which type 

of quark fields do (2) refer. In this paper we suggest, contrary to the im- 

plications of refs. 2 and 3, that (2) refers to constituent rather than current 

quark fields. This proposition has profound implications for the theory of 

chiral symmetry breaking: 

(i) for the current quark mass scales and ratios 

(ii) for the accepted additivity connection between constituent and 

current quark masses 

constituent = mcurrent + mdynamic 
mi 1 (3) 
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and the flavor-independence of the latter dynamically-generated quark mass 

(iii) for the U(1) problem, i.e. consistency with the U(1) vacuum 

Ward identity.(4) 

To this end, in Sec. II we review the theoretical and phenomenological 

distinction between current and constituent quarks, especially for the"bad" 

operators 44. Then in Sec. III we show how the Nambu (5) dynamical realiza- 

tion of spontaneous breakdown in the chiral limit unambiguously requires 

constituent quarks to satisfy the vacuum inequality (7-a). We apply renor- 

malization-group ideas (6) and Goldberger-Treiman relations at the quark level 

to reaffirm this connection. From the viewpoint of the Goldstone theorem, 

the essential content of Sets. II - III is that in the chiral limit 

<o/tq)co*lo) f 0 (&a) 

<wiq)currlo) = 0 . (4b) 

the latter result being stictly valid in the free quark model. 

Given (4),in Sec. IV we turn on the chiral symmetry breaking current quark 

mass matrix and investigate the differences between "strong" PCAC Q-,3) and 

"neutral" PCAC,("') the latter requiring that (4b) is proportional to one 

power of current quark mass which does vanish in the chiral limit. Then 

ta:, = B(rnE& combined with bare structure function integrals sets the current 

quark mass scale of I& -60 MeV and also resolves the U(1) problem in a 

simple way. Finally in Sec.V we compute all current quark masses in order 

to demonstrate that mcOn - mcurr is indeed flavor independent as suggested 

in (3). Renormalization group ideas are then used to fortify this result and 



also to reaffirm the neutral PCAC current quark mass scales 

The distinction between (01 (iq)con/O) and (OI(iq)currIO) is 

then summarized in Sec. VI. 
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II. Current vs. Constitutent Quarks 

Two quark pictures associated with different SU(6) algebras of operators 

have been quite successful in hadronic physics. "Current" quark fields have 

been used to construct U(3) quark currents for i = 0 - 8, 

i _ 
V;(x) = + [i(x) Ai Ye k41curr, +x) = $q(x) x 

i 
yuy5 q(x) 1 c”rr 9 

(5) 

which in turn are used to realize the SU(3) x SU(3) current algebra. (9) These 

S’.J(6) W,C"rr 
currents are also presumed to be directly involved in weak and 

electromagnetic processes. Furthermore, via PCAC, these current quark 

operators control various strong interaction processes involving pions and 

On the other hand the "constituent" quark picture seems appropriate for 

the classification of the low-lying hadrons. Not only can such states be 

grouped into different irreducible representations of SU(6) w,strong' 
but 

the additivity of constituent quark masses and magnetic moments give an amaz- 

ingly accurate picture of the corresponding masses and moments of the com- 

posite hadrons. 

It is by now well appreciated that current and constituent quark masses 

are conceptually and numerically different, but it is important to stress 

that current and constituent quark fields are also not identical. Phenomeno- 

logical arguments which lead to the latter conclusion include the observa- 

tions that if one assumes identity then the Adler-Weisberger relations 

1+ 
should be well-saturated by the lowest ? and $+ baryon multiplets and that 

baryon anomalous magnetic moments should vanish. Both of these conclusions 
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are, of course, in conflict with data. In addition, there are purely 

theoretical arguments which show that an identity between current and 

ConStituent quark fields cannot hold; Melosh (10) has argued this on the 

basis of a conflict with ordinary rotational invariance, ~~11 =,-,d Hey (11) 

have shown that this identity excludes the existence of the %(I,~ = 0) 

meSO"*) and de Alwis and Stern (12) have proved that this identity implies 

either hadron mass degeneracy or incorrect singularity structure *f the 

matrix elements of currents. Put another way,composite hadron states built 

up from constituent but s current quarks are sharp in angular momentum. 

Although current and constituent quarks are distinct, it is perhaps 

not unreasonable that they are related by a unitary transfomatiOn. Such 

a transformation was constructed by Melosh (10) for degenerate, non-inter- 

acting quark fields (it is not trivial even then). This Melosh transforma- 

tion has in fact enlarged the number of theoretical hadronic decay transi- 

tions of the form a + S + n which are consistent with data (13) . While 

attempts(14) to generalize the Melosh transformation to interacting quark 

theories have not altogether been successful, it will be sufficient for our 

purposes that the two quark pictures are definitely distinct. 

one criterion for a unitary Melosh transformation is that it transforms 

"good" quark operators such as Qi and Q: into good operators. However, 

8Vbad" quark operators such as (qq)curr and (Gq),,, are not expected to be 

unitarily related. In particular it is believed that the vacuum inequality 

(0 I (44) C”Tr lo> # (01 Gq)co”lo) (‘3) 

holds true for interacting quarks since it certainly valid for free quarks. 
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III. Extended Goldstone Theorem and 01 (<q)coniO) . 

To repeat: the Goldstone theorem (1) states that if the (axial) charge 

95 associated with the conserved current a.A = 0 does not annihilate the 

vacuum, Q,lO> + 0, then there must exist a massless Nambu-Goldstone boson 

(NGB) in the theory. The drawback to this theorem is that it is usually 

difficult to determine directly if Q,lO> # 0. 

For the case of chiral symmetry, it is believed sufficient that the 

chiral non-invariant operator iq obeys 0) 

:Ol;slO) f 0 * Q,ld # 0 + NGB . (7) 

Even here, however, a subtlety arises because we have stressed in (6) that 

the vacuum matrix elements of current and constituent bad quark densities 

are not equal. Thus to clarify the "extended" Goldstone theorem (7), we must 

specify whether iq refers to current or constituent quark fields. 

To this end we consider the Nambu (5) dynamical realization of the Goldstone 

theorem for the spontaneous breakdown of chiral symmetry. Although it was 

originally demonstrated for a four fermion theory (5) . , It has been recently 

extended to chiral-invariant vector gluon-quark theories (15) with the aid 

of the axial-vector Ward identity. This demonstration amounts to showing 

that the equations that dress the quark (DE) and give it its mass m = m 
dy* 

(assuming that m. = 0 in the chiral limit) are identical to the Bethe-Salpeter 

dynamical equations which bind the quark-antiquark in s-wave as q -t 0 into 

a massless pseudoscalar (PBElq + o): 

DE = PBElq ~ o . (8) 

Rather than repeat the dynamical proof of (8) here, we exploit the axial 
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Ward identity to obtain the kinematic structure of the resulting axial vertex 

function. First define the inverse complete quark propagator as 

s-l(p) = C(p2) + D(P2)$ , (9) 

with off shell or "running" quark mass determined by (6) 

m(!A = -C(p2)/D(p2) . (10) 

Then the axial Ward identity (in an axial gauge and deleting flavor indices) 

-iql+ v5(p;q) = s-l(p + 3 q)v5 + Y5 s-l(p - + q) (11) 

can be expanded around q + 0 to determine the axial-vector vertex 

ru5(p;q) = iD(p2)[- 
2m(P2)quY 

q2 
5 + YJ53 + . . . . (12) 

Clearly the pseudoscalar wave function is proportional to qpru5 and the 

first term in (12) exhibits the massless NGB pole. Furthermore since D(p2) 

# 0 (in fact D(p2)- 1 as p2 + -), if m(p2) # 0 then the NGB exists in the 

theory with in fact the condition (8) satisfied. 

The link between the Goldstone and Nambu versions of spontaneous break- 

down thus reduces to the relation between ~o/~qlo> # 0 in (7) and m(p') # 

0 in (12). Since in fact the complete quark propagator in (9) is the Fourier 

transform of (OIT(;(x), $(O))]O) , a short distance and anomalous-dimension 

analysis extrapolated to low p* suggests that 6) 

(OliqW) 10) a m3W, (13) 

where the operators are renormalized at a fixed mass scale M, to be clarified 

shortly. 

The final step is to identify m(p2) in (12) and (13) as the constituent 

quark mass. In the chiral limit this is certainly the case because mcurr + 0 

in this limit. Furthermore, if the quarks are taken "on-shell" according 
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to the gauge-invariant prescription (m + m(M)) 

m = m(p2 = &n), (14) con 

the structure of the Goldberger-Treiman induced pseudoscalar term in (12), 

fg = 7 1qq 
6 5 i(mU + m,) is similar to the nucleon version with f,grNN = 

?+A. 
The connection between the two case?. is the quark additivity relation 

"N - 3i, which by definition refers to "free" constituent quarks in (14). 

To make this point in a more quantitative fashion, consider for the moment 

the SU(3)-breaking Goldberger-Treiman relations at the quark level which 

follow from (14), 

fg =icon I fKgKqq =yms +acon . l( 
n nqq 

(15) 

Since one expects g to be weakly dependent upon (non-relativistic) 
wq 

and g 
Kqq 

reduced masses along with flavor-independent quark-gluon coupling constants, 

it is reasonable to assume that g 
mq 

-g in (15). Then one obtains(15) 
Kqq 

for fK/f ll = 1.2, 

bsl~)con = 2(fK/f,) - 1 = 1.4 ) (16) 

which is precisely the accepted (16) constituent quark mass ratio with I% = 330 

MeV and m - 550 MeV. s 

Returning to the chiral limit, the above discussion allows us to sharpen 

the extended Goldstone theorem to read 

<o 1(~9),,,10) # 0 + Q,lO) # 0 + NGB , (17) 

where the constituent structure of {q in (17) follows from (12) - (16). The 

Nambu version (12) of the Goldstone theorem requires that the equations which 

dress the constituent quark in the chiral limit (with mcurr = 0) and give 

it its mass m 
con 

# 0, also refer to constituent quark fields with (01 (iq)conlO) 

f 0. 



10 

Put another way, the axial-vector quark current in (5) certainly is built 

up from current quark fields, while the axial-vector constituent quark vertex 

(12) exhibits spontaneous breakdown of chiral symmetry by displaying the 

Nambu-Goldstone induced pseudoscalar pole provided (OI(qq)coniO) and there- 

fore m(p') are non-vanishing. By way of contrast with (12) and (17), operators 

built up from current quarks in (5) appear to be insensitive to the free quark 

limit (whereas the constituent quark vertex (12) is not), since the free 

quark current algebra and Heisenberg equations of motion have the same strut- 

ture as in the interacting quark case. Thus it is perhaps reasonable to com- 

pute (olGq)c"rr IO) in a free quark model in the chiral limit (CL) with 

m =o: curr 
~Ol(~q)c”rrlO)free,CL = / *= 0 . ( 18.3) 

P 

Furthermore, we may convert the bare vacuum in (1%) to the physical 

vacuum via quark-gluon interations in the loop. Since the latter y-matrix 

couplings are each accompanied by one qua& propagator, (18a) is dressed in 

any finite order or perturbation theory (PT) according to 

4 I (~q)cu,,Io) 
PT,CL 

a i d4p Tr(; 8 tit dl 8 6 : A2...$ +) = 0, 

(lab) 

because there are always an odd number of y-matrices in the trace. The point 

is that spontaneous breakdown is non-perturbative, but chiral symmetry break- 

ing may very well be perturbative. 
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IV. Chiral Symmetry Breaking and (01 (iq)currlO). 

In the real world the TT, K and "g do have mass, and so one must combine 

the spontaneous breakdown of chin1 symmetry giving mT = mK = roll = 0 with 
8 

chiral symmetry breaking corresponding to m. f 0 in the Nambu dynamical ap- 

preach. In particular, one assumes that the NC pseudoscalars acquire all of 

their mass from quark mass terms m 
curr curr cllrr 

, m , m " d s which appear in the 

familiar chiral-breaking SU(3) quark Hamiltonian density 

H' = (4 Mq) 
C"?ClT 

= m~%tdurr + m;urr("d)curr + mzurr(&)curr. 

(19) 

In (19) we stress that both the masses and fields are current quark quantities. 

The next step is to apply PCAC to (T~H'IT), etc., and invoke the 

SU(3) x SU(3) current algebra to the current quark fields in (19). leading 

to (2,3) 

m : ’ 2 (&Q:, [Q:, tfll[O) = + (OlC;u +ad&IO> (20) 

n lr 

It is at this point where we differ from conventional wisdom, according to 

which the current quark fields in (20) are not distinguished from the con- - 

stituent quark fields in the extended Goldstone theorem (17). Indeed, we have 

seen in (18) that (O((qq)curr IO) in the free quark model is radically dif- 

ferent from (ol(qq)co*lo) in the chiral limit. 

We have stressed in Sec. III that the constituent quark fields are 

linked to the static axial charges in the extended Goldstone theorem. By 

static we refer to vector and axial charges defined on space-like surfaces 

9’ = f d3x V;(X) Q;=!d3xA$ . (21) 

The existence of the NG mode Q$O) # 0 requires that physical hadron states 
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have complicated transformation properties under the static charges Qi, 

However the charges defined on the light plane (17) 

si = f d2xL1. dx+V$) Cj; = I d2xL / dx+At (x) (7-2) 

do annihilate the vacuum (18) g/o, = $[O> = 0. Yoreover, the light-plane 

charges G'transfom single-particle hadron states into single-particle hadron 

states, a statement not true of the static charges QL, which generate particle 

pairs, etc. Thus, the light-plane charges are the natural choice to study the 

algebraic structure of the hadrons and the "bad" quark operators (iq),,,,. In 

departing from the chiral limit as in (19) or (20), the light plane charges still 

annihilate the vacuum; they are thus the natural link to the chiral breaking 

operators (qMq)cU,r, 

This mismatch between hadron states transforming simply under Q', while 

PCAC is driven by Qi through the spontaneous breakdown mechanism, is reflected 

in the difference between the W(3) transformation properties of constituent 

and current quark bad operators. That is, (i.Xidcon transforms simply as Xi, 

while (4hiq),,,, cannot transform like ,Ii as is usually assumed (2,3) . For ex- 

ample in a vector-gluon quark theory, the "good" two-component quark fields $ 

must be projected from the four component current quark fields q,,,,, leading to (20) 

(6Wcurr - ~t”i(V~ + WI) McurrVI1$ 

+ c+‘M2 &I10 . (23) 

The analog of the free quark-vacuum matrix elements of (23) is (18), which de- 

rives from the vanishing of the spin-flip transition to the bare vacuum. To any 

finite order in perturbation theory, therefore, we have 

<o I GL. g$v;la I 0, = 0, .ol$+v;l$lo> ‘O(l), (24) 
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since light-plane and canonical perturbation expansions are equivalent. Note 

that vacuum matrix elements suppress the spin-flip first terms of (23) as in 

the parton model, with "Z-diagram" suppression. 
(8,21) This spin-flip suppression 

also occurs for the soft pion transition from +[qq[n> to <O/qqlO> in (20). 

Thus we have, from (23) and (24), 

<Oi (&curriO> = Mcurr 4$t~:1~$l~> (25a) 

+ 0 in chiral limit, (25b) 

with (25b) recovering the free current quark limit in (18). We shall refer to 

the explicit current quark mass factor in (25) as a statement of (8) "neutral" 

PCAC, which in turn requires two powers of current quark mass in (20) - 

2 
% = O(f(urr) 1 (26) 

as opposed to one power of current quark mass in the "strong" PCAC picture. (2,3) 
- 

That is, for neutral PCAC, (iq)cu,r "remembers" only the current quark mass in 

(25), while for strong PCAC (tq)cur, "knows" about spontaneous breakdow", 

4Gq)cur,lo> - mcon. In the latter approach <O((<q)curr[O> is thus assumed 

to be identical to <O/(qq)conl O> and not vanish in the chiral limit. 

As in any scheme of PCAC at the hadron level, neutral PCAC at the quark 

level must involve a" extrapolation scale away from the CAC, chiral limit. 

Either in (26) or in 

2.A' = -i[Qz, H'] = -a c"rr(4Yg~3q) cur= ' (27) 

with <01(iv5X3q) 1~1) also proportional to one power of lacurr by analogy (8) 
curr 

with (23) and (25), we expect the extrapolation scale to be the constituent 

quark mass Taco* = 330 MeV. Then neutral PCAC corrections in (26) and (27) 

2 
are of order (6 currifi~on), *o that a need not be as small for neutral PCAC 

curr 

as for strong PCAC, where Tacurr - 5 MeV. 

In order to extract the actual current-quark mass scale for neutral 

PCAC, we first observe that ilil = rnt (27.) oTT along with (26) requires the Zweig 
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rule PCAC constraint 

<lr[ (s*)currjT> - 0 . (28) 

(6) 2. !:ow in renormalization-group language, rii(p ) III (10) is presumed to recover 

A curr provided p 2 is high enough - 10 GeV2 to expose the "bare" current valence 

quarks in the pion, but without being too large so as to excite quark pairs in 

the sea, leading to scaling and Zweig rule violations. Thus we speak of a 

"bare" quark pion structure function h(x) as required in the pion matrix ele- 

ments of the dominant second term of (23) 

2 
mT = 2fi;",rh , h=/;dxh(x),x . (29) 

Indeed, if h is to be finite it is clear that h(x) must vanish as x -f 0. 

This tells us that we must subtract out the sea and gluon contributions, 

consistent with the Zweig rule (28) and the notion of a bare structure 

function. 

To proceed further, we confirm the valence normalization in (29) by 

first working in the weak-binding limit, with h(x) -t 6(x-1/2) predicting 

h = 2 and m ll = 2*curr as expected. A more sophisticated h(x), however, 

should recover the (l-~)~ behavior (23) as x + 1, leading to the "bare" 

structure function a x2(1-x) 2 and the stale(8) 

h=5/2 , a curr = + mT = 62 FleV. (30) 

Indeed there are five (8) such bare quark structure functions for O-, l-, 

l/2+, 3/2+ hadron states which lead to the current quark mass scale (30) 

in the context of neutral PCAC, 



Although this neutral PCAC scale ficurr . 60 MeV is of significant 

interest (and will be used in the next section to demonstrate the consistency 

of a unified picture of current and constituent quarks), it is the propor- 

tionality of pseudoscalar masses (and not their squares) with current quark 

masses as in (26) that we wish to exploit here. 

To this end we compute the vacuum matrix element of (24) 

IQ;? a*ANS] = ficurs(;u + dd)curr, for the anomalous divergence 

hANS = -6 VNs + (g2/32n2)E GPV Ga6 uva6 r r a (31) 

This leads to the U(1) vacuum Ward identity 

rh curr <O((;u + ~d)currlO> = -ifiiurr 1 d4x <O~T(V~~(,),~~~))/O> 

2 
+ <<” >> , (32a) 

~~v2~~ : -i(g/4n)4 ld4x <OIT(GG*(x),GG*(O))/O> . (32b) 

Now in the neutral PCAC scheme, the LHS of (32~~) is O(mturr) by virtue of (25). 

Thus it is clear that <<v2,, likewise satisfies 

2 
<<'j "neutral PCAC 

= oha2 cur+ ) . (33) 

This result is perfectly consistent with the WKB estimate of <<v2>>, 

giving(4) 

2 
<<" "WKB = &a2 cur) ' (34) 

Moreover the neutral PCAC result (25) is also consistent with the independent 

WKB estimate(4) 

4 I (44) cuT= I o'WKB = O(ficurr) . (35) 
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In contrast to this self-consistent neutral ?CAC picture, one may consider 

the strong PCAC scheme which blurs the distinction between current and con- 

stituent quarks. If as in refs. 2 and 3 we take ~Ol(;q)~~~~iO> # 0, then 

the chiral breaking U(1) Ward identity (32) requires <<v2>> = L’(fi ). The curr 

WKB approximation contradicts this, both in (34) and in (35). ?.oreover none 

of the many contrived schemes to solve this “U(1) problem” are satisfactory. (4) 

With hindsight Crewther’s U(1) problems are caused by his a priori insistence - 

on the strong PCAC requirement ~01 (qq)cu+r /O> # 0, which in fact conflicts u’ith 

the WKB approximation. Therefore within the context of strong PCAC an afternative to 

the WKB approximation must be found. On the other hand as we have seen, neutral PCAC 

and the WKB approximation are compatible. 
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V. Flavor Independence of CO1 (iq)cOn/o> 

We have argued that <O/(qq)cOnlO> # 0 in the chiral limit. Since the 

vacuum is a unitary sinsletve expect that 

co I (L) 
cm O> = <Ol(dd) c.nlO> = ‘OIGs)conlO> # 0 . (36) 

By way of contrast <O/(qq)curr /O> -f 0 in the chiral limit for neutral PCAC, 

but 

<ol(;~)/rn~)~~~~lO> = <Ol(dd/md)curr/o> = <ol(~*)/ms)currlo> + o . 

(37) 

To test (36) we recall from (13) that <~l(qq)~~~ IO> is proportional to 

the dynamically-generated quark mass m(p‘) -+ mdyn and (12) in the chiral limit. 

Away from the chiral limit we might then expect that m 
dyn 

measures the differ- 

ences between constituent and current quark masses -- then flavor independent 

according to (36): 

In the neutral PCAC scheme the condition (37) applied to (19) predicts the 

current quark mass ratio (7,s) 

bs /a) = [2(mpm~) -111’2 = 5 , (39) C”?X 

which in fact is consistent (25) with the nN n-term of 65 MeV and the Goldberger 

Treiman discrepancy of 6%. Combining (39) with the scale (30) gives 

m : 300 MeV. s ,curr 
Subtracting these current quark masses from the known 

constituent quark masses of 330 MeV and 550 MeV then gives 
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mdyn 
=a -fi - 330-60 ; 270 MeV 

con C" rr (4Oa) 

mdyn 
= my _ *purr : 550-300 z 250 MeV. (40-o) 

The important point is that (40~~) is reasonably close to (40b) in magnitude. 

Both, in fact, are consistent with a recent calculation of 'TI 
dyn 

in a QCD 

context.(26) 

If we extend this analysis to the charmed sector, (presumably with 

greater PCAC extrapolation corrections) then we find (8) 

hch) C"rlZ = [z(g/m?;) - 111'2 I: 19, 

so that mrrr - 1200 MeV. Then for mr* - 1550 MeV, we compute 

con 
mdyn = mc - mc c"rr - 1550 - 1200 - 350 MeV, 

also close to (40). 

(41) 

(42) 

Lastly we may investigate the electromagnetic mass splitting of mesons 

and baryons to extract (mu- md)curr. In the soft meson limit the Dashen 

theorem(27) is exact, (HJJ)aK = (HjJ)A,n from which the c3u3 current quark 

tadpole structure of H' given by (19) leads to (in any PCAC scheme) 

2 2 
~ "mK - Amn f: o 021 

(43) 

For the neutral PCAC mass scale of ficurr Z 60 MeV and (39), (43) predicts 

the mass shift 

(mu- md)curr :: -8 MeV. (44) 
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In fact the observed n-p mass difference also predicts (28) (44). On the 

,other hand, a recent constituent quark analysis of em mass splitting concludes 

thatc2’) 

(m - mdjcon : -6 MeV. (45) u 

Once again (44) is sufficiently close to (45) that the flavor independence of 

mdyn (and therefore of <Ol(;q)con IO>) would appear to be satisfied in nature. 

Although the essence of the point we are making in this section is contained 

in the preceding discussion, it is worthwhile being somewhat more careful as to 

the meaning of the multitude of mass parameters that appear. The scale-dependence 

of masses (see (10) above, for example) should be examined explicitly. 

The concept of a scale-dependent quark mass m(p2) originated in a field- 

theoretic study of inclusive lepton-hadron scattering, (30) and had the inter- 

pretation of a parton mass appropriate to the momentum transfer p2. Georgi and 

Politzer(30) further proposed that this mass should interpolate between current 

and constituent quark masses, although the idea was not made precise. Now, in 

perturbation theory, it is easy to see that 

Lim 
mi (P2) 

p2 * m mj (P2) 
= Abare 

T 
(46) 

where i, j are flavor indices (u,d,s,. . .). Politzer(@ showed that this equation 

holds true in the presence of dynamical spontaneous symmetry breakdown, even if 

it is non-perturbative in origin. While we will make use of a stronger result 

of Politzer for mi(p2) below, for the moment we simply draw some consequences 

from (46) in the context of neutral PCAC as presented in this paper. The 
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scale-dependent quark nass m(p') may be decomposed into a sum of two terms, 

Ini = mi,curr(~2) + mdyn(p2) , (47) 

where m as we have seen, arises from explicit chiral symmetry 

breaking and is flavor dependent while m dyn(p2) is dynamically generated, 

nonzero even if the Lagrangian itself has no mass parameters to set a 

scale, and flavor independent. The p‘-independent current quark mass de- 

rived in (29) corresponds to h(p') evaluated for p 2.. 10~e"~ region where 

the quark sea and gluon contributions in the pion are suppressed. 

At lower p‘, however, we must invoke detailed renormalization-group 

formulas to recover consistency. More explicitly, we take 

2O d mi,curr(p2) = mi,curr(d)[ K 1 

mdyn(P2) = + < 01 (id con W 10' p&+-d 

P g2 W 

where 

d- 12 d-z d 
33 - 2Nf ' 4112 22n(p2/A2) 

(49) 

where M is the renormalization mass, and AZ 0.25 CeV sets the scale of the color 

coupling g2. These expressions for mi curr and m dyn('*) are only correct 
, 

asymptotically, so use of them for finite p 2 is questionable; nevertheless, 

OUT results will be seen to be encouraging, thus supporting the viewpoint 

advanced herein. 
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Phenomenology suggests that ficon is approximately 330 E!eV; but what 

value of p2 should one take to make "se of this? Georgi and Politzer (30) 

proposed to define the constituent quark mass at threshold for qq production, 

p2 = 4m;. This prescription is not gauge invariant. We will choose p2 2 
= m. 1 

as in (14), the only gauge invariant definition, so 

S(P2 330 MeV . (50) 

As indicated by recent lattice gauge theory results (31) , we will assume that 

g2(p2) is essentially constant for p2 2 1 GeV 2 . Then our estimateof 62 MeV 

for “curr (10 GeV2) implies i (1 GeV2) = 82 MeV = m (P2 = I?,,'. Sub- curr curr 

stituting these estimates into (48), we find 

ikE!m <ol(qq) 
M2 con 

(M)I,,> = 248 MeV 

for M = 330 MeV. 

Now that the scale of the flavor-independent vacuum matrix element 

has been set, we may "se it to test our values for other current quark 

masses. (The calculation may equally be viewed as a check on the flavor 

independence of the vacuum matrix element, given our current quark masses.) 

For the strange quark, we demand via (47). 

s,con(~2 = &On) = 410 MeV + m2M2 

2 2 
g (* 

m [ 
) l-d 

,;;y 1 (248 MeV), 

S,COll 
(52) 

where we have used the assumption of constancy for g2 at p2 < 1 GeV2 and 

the previously obtained value for ms (10 GeV2) of 310 MeV, to write 410 MeV for 

m 
s,curr (p2 = mf,con)’ 

The solution to (52) is 
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m s.con = 512 ?leV , (53) 

not inconsistent with m 
s,con estimates which vary from 500 - 550 M=V. 

lnputing instead the strong PCAC values of kcurr z 5 GeV and mS curr :: I50 MeV at 
, 

P2 S 10 GeV’, a procedure analogous to (50)-(52) leads to the self-consistent solution 

m s corr ~'350 MeV, significantly below the expected value. 
, 

The situation with respect to the charmed quark mass is not so 

straightforward. We estimated above that mc =urr = 1200 XeV, but this was 

for a scale of p2 roughly (10 GeV2). Since g2 is expected to vary in the 

l-10GeV2interval, m However, so long as the vacuum c cuT= will likewise vary. 

matrix element is not strongly dependent on the renormalization point, the p 
2 

in the denominator will make the second term in (48) negligible for the cha&ed 

quark (as well as for higher mass quarks). Therefore 

d 

m (54) 

which leads to the expected result 

m : 1440 MeV c,con 

for a reasonable guess as to the variation of g2. 

We conclude that flavor independence of the dynamically-generated quark masses 

is indeed valid in the neutral PCAC scheme. 
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VI. Conclusion 

We have observed that there is a mismatch between the simple transformation 

properties of hadron states under light-plane charges and the driving of PCAC 

under static axial charges. We maintain the consequent distinction between 

current and constituent quarks should not be ignored -- especially as mani- 

fested in the bad quark density operators iq and YySq. In this paper we have 

see” that the corresponding vacuum matrix elements of the scalar densities 

have distinct attributes, according to the following scheme: 

<Ol mco”lO’ 

Static charges 

Nambu-Goldstone spontaneous breakdown 

Dynamically-generated quark mass 

Flavor independence 

Light plane charges 

<Ol (h) IO> 
Current algebra 

curr Chiral symmetry breaking 

Neutral PCAC resolution of mismatch 

Such a theoretical picture is motivated by the parton model and required for 

a simple solution of the vacuum Ward identity U(1) problem. Moreover the 

neutral PCAC scheme is in phenomenological agreement with the irN o-term, 

Goldberger-Treiman discrepancy, 0-, l/2 +, 1-, S/2+ hadron mass spectrnm and 

the flavor independence of the constituent to current quark mass difference. 

Finally, it is consistent with renormalization group mass formulae. 
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